2014-11-03

Topografická mapa Marsu ve vysokém rozlišení

Už je to více než dva roky, co jsem publikoval svou první mapu - topografickou mapu Marsu ve válcové projekci. Díky ní jsem si splnil jeden ze svých snů, zkusit si vytvořit vlastní mapu nějaké planety. Tento sen mi uzrával v hlavě zřejmě hlavně pod vlivem jedné z knih, kterou mám doma v knihovničce - Atlas vesmíru od Kevina Krisciunase a Billa Yenne. Název je poněkud přehnaný, protože o Vesmíru tam toho moc není, spíše je tato kniha plná planetárních map. Kniha má už dnes téměř čtvrtstoletí (anglický originál Atlas of the Universe byl vydán v roce 1991), ale přesto názorně demonstruje lidskou snahu poznávat a popisovat místa ve Sluneční soustavě, kam se dosud nikdo nevydal. Navíc byla vydána v době, kdy už lidstvo, díky misím Marinerů, Lun, Lunar Orbiterů, Pioneerů, Vikingů a Voyagerů, mělo aspoň rámcovou představu o vzhledu většiny větších těles Sluneční soustavy.

Od té doby se ale hodně věcí změnilo. Mise jako Galileo, Lunar Reconnaissance Orbiter, Magellan, Mars Global Observer, MESSENGER či Cassini přinesly obrovské množství poznatků o již částečně známých tělesech a mnoho misí zkoumalo také úplně nová tělesa, třeba Dawn Vestu, v dohledné době se dočkáme od této mise průzkumu trpasličí planety Ceres a v půli příštího roku se konečně dozvíme jak vypadá zblízka Pluto a jeho měsíc Charon díky misi New Horizons. Myriády misí také navštívily menší planetky a komety. Nedá mi to nezmínit třeba právě probíhající misi Rosetty u komety 67P/Čurjumov-Gerasimenko, v rámci které bychom se 12. listopadu mohli dočkat i prvního přistání na kometě.

Nové mise s novými typy přístrojů přinesly skutečný převrat v některých oblastech planetární kartografie. Zejména přesné výškoměry (laserové, radarové) a kvalitní CCD kamery nám nyní umožňují odhalit nejen dvourozměrný vzhled povrchových útvarů, ale i jejich topografii s dříve nedosažitelnou přesností, často porovnatelnou s tou, se kterou jsme se setkávali jen u map pozemských.

Small part of the new topographic map of Mars at full resolution.

To je i příklad Marsu, u kterého má předchozí mapa zdaleka nedosahovala plné kvality dosažitelné se zatím pořízenými daty. To a nepříliš vhodný typ projekce mě vedlo ke snahám vytvořit novou mapu, která dosáhne vyššího rozlišení a bude ve vhodnější projekci. Naštěstí jsem v tomto případě nemusel začínat jak se říká od píky, ale měl jsem k dispozici již obdobnou mapu Venuše, jejíž grafické části jsem mohl s drobnými korekcemi využít i u nové mapy Marsu a to prostřednictvím programu IPE 6.

S mapou Venuše tak novou mapu spojuje stejný typ projekcí, tedy Merkátorova pro větší část povrchu a stereografická pro oba póly. Obě polární projekce jsou opět po 60-tou rovnoběžku, Merkátorova pokrývá šířky od -65 po 65° (u Venuše to bylo -66,512 až 66,512). Použité měřítko umožňuje zobrazit na rovníku detaily o rozměru zhruba 2,5 kilometru, 1,5 km v okolí pólů a přibližně 1 kilometr okolo šedesátých rovnoběžek u obou typů projekce (rozlišení na pixel je pak dvojnásobné). Pokud by mapa byla vytištěna při rozlišení 200 DPI pak by měřítko bylo 1 : 10 000 000 pro Merkátorovu projekci a 1 : 6 000 000 pro obě stereografické projekce.

U podkladové mapy byla použita vystínovaná reliéfní mapa vytvořená z datasetu MGS-M-MOLA-5-MEGDR-L3-V1.0 (Smith et al. 2003) a transformace do Merkátorovy a stereografických projekcí bylo provedeno online aplikací Map-a-Planet 2 (MAP2 2014). Reliéf byl vytvořen pomocí programu Microdem. V případě obou stereografických projekcí bylo reliéfní zobrazení rozmazáno mediánovým filtrem, kvůli odstranění některých vysokofrekvenčních artefaktů. Stejný program a stejná data byla použita pro vytvoření barevné mapy výškových úrovní, které jsou vztaženy k areoidu mgm1025 (obdoba mořské hladiny u Země) (Lemoine et al. 2001).

Oproti starší mapě Marsu ale nezůstalo jen u dat z výškoměru MOLA. Po zkušenostech se spojením topografických dat a obrazových dat u mapy Venuše, jsem použil obdobné kombinace i u nové mapy Marsu. Vysokofrekvenční detaily a albedové útvary na mapě pocházejí ze snímků pořízených kamerou THEMIS na palubě sondy Mars Odyssey. Kamera THEMIS je přístroj, který snímá tepelné vyzařování povrchu Marsu a jsou dostupná dvě globální zobrazení Marsu vytvořená ze snímků tohoto přístroje. Jedno je vytvořené ze snímků pořízených přes den a druhé ze snímků nočních. U této mapy je použité globální zobrazení z denních snímků (Edwards et al. 2011). Výhodou snímků z THEMIS je vysoký kontrast u topografických i jiných útvarů, jistou nevýhodou je pak méně intuitivní zobrazení některých albedových útvarů, protože světlejší útvary se jeví na tepelných snímcích obecně tmavší, u tmavých útvarů je tomu naopak. Mapy z přístroje THEMIS byly opět pořízeny přes aplikaci Map-a-Planet 2. Malé oblasti okolo pólů chyběly, ty jsou doplněné ze starších map MDIM 2.1 vytvořených z letitých, leč stále dostatečně kvalitních dat sond Viking (Archinal et al. 2003). Finální kompilace všech map do podoby rastrové mapy byla dokončena v programu Adobe Photoshop. Všechny ostatní kroky již byly uskutečněny v IPE.

Souřadnicový systém použitý u mapy je planetocentrický (areocentrický) verze IAU2000 (Seidelmann et al. 2002).

Pojmenování útvarů vychází z názvů schválených IAU a oproti starší mapě by tato mapa měla obsahovat úplně všechny oficiální názvy k 2. listopadu 2014. Všechny aktuální názvy lze najít přes stránky Gazetteer of Planetary Nomenclature.

Stejně jako u přechozí válcové mapy Marsu i zde jsem použil data z laserového dálkoměru MOLA pro informace o výškách pro jednotlivé kóty. Informace o výškách u kót jsou z 95% přímo převzaty z podkladů pro starší mapu a opět pochází z datasetu MGS-M-MOLA-3-PEDR-L1A-V1.0 (Smith et al. 1999). Vztaženy jsou také k areoidu mgm1025. Jediný rozdíl spočívá v odstranění některých kót, které byly zbytečně blízko (týká se zejména pólů) nebo odstranění údajů, které vypadaly nevěrohodně. Celková chyba v topografických měřeních pomocí výškoměru MOLA je tak okolo tří metrů, ale může být i horší v případě extrémní topografie terénu (příkré svahy). Menší část výškových informací pochází z topografických modelů založených na datech z kamery HRSC sondy Mars Express (dataset MEX-M-HRSC-5-REFDR-DTM-V1.0 - Roatsch 2008), které jsou sice méně přesné (+/- 10 metrů), ale zase mají vyšší prostorové rozlišení a lepší pokrytí terénu. Oproti starší mapě je zde použito jiné značení a informace založené na datech z HRSC jsou nyní rozpoznatelné tím, že jsou napsány kurzívou. Tato změna umožnila pro jednotlivé informace u kót přímo použít zároveň hodnotu jak z výškoměru MOLA tak i kamery HRSC.

Informace o místech přistání sond jsou pro Mars Pathfinder, Mars Polar Lander, Deep Space 2, Beagle 2, Mars 2 a 6 převzaty z Ball et al. (2007). Lokace Marsu 2 byla upravena dle rady Phila Stooka o 10° východněji (Stooke 2012). Poloha Marsu 3 odpovídá zbytkům nalezeným Vitalijem Jegorovem v roce 2013 (Egorov et al. 2013) a poloha modulu Phoenix je z (Lakdawalla 2008). Pro ostatní sondy je použito informací z katalogu NSSDC (NMC 2014).


TOPOGRAPHIC MAP OF MARS
Topographic map of Mars in Mercator and stereographic projection. Image has 17,400×14,700 pixels and 78 MB size. PDF version with searchable text is available here (106 MB). It works with Sumatra PDF viewer and possibly with others too.

Mapa v plném rozlišení je k dispozici na Flickru jako 78 MB jpeg o rozlišení 17 400 × 14 700 pixelů a dostanete se k ní přes obrázek výše nebo jako PDF o velikosti 106 MB, které je k dispozici přes Google Disc zde. Obdobně jako u mé přechozí mapy Marsu i zde doporučuji tuto stránku sem tam zhlédnout kvůli novějším aktualizovaným verzím. Na rozdíl třeba od Venuše, kde aktualizace nejsou potřeba, u Marsu dochází k pojmenovávání nových útvarů jednou za dva až čtyři týdny a proto počítám s tím, že mapa bude v budoucnu nejednou aktualizována. Informace o aktuální verzi je možné nalézt jak textu na mapě, tak i v tabulce dole.


Základní údaje o mapě Marsu.
Basic information about Martian map.
Projekce/Projection:Merkátorova a polární stereografická/Mercator and polar stereographic.
Měřítko (při 200 DPI):
Scale (at 200 DPI):
1 : 10 000 000 (Mercator), 1 : 6 000 000 (polar stereographic).
Systém souřadnic:
Coordinate System:
Planetocentrický
Planetocentric (IAU2000).
Výšky vztaženy vůči:
Elevations referenced to:
Areoid mgm1025.
Typ licence:
Licence type:
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Aktuální verze z:
Actual version of the map from:
2.11.2014.

Reference:

(Archinal et al. 2003) Archinal, B. A., Kirk, R. L., Duxbury, T. C., Lee, E. M., Sucharski, R., and Cook, D., 2003, Mars Digital Image Model (MDIM) 2.1 control network, ISPRS Working Group IV/9 Workshop ”Advances in Planetary Mapping 2003”, Houston, March 2003.

(Ball et al. 2007) Ball, A., Garry, J., Lorenz, R., and Kerzhanovich, V., Planetary Landers and Entry Probes, Cambridge University Press, New York (2007).

(Edwards et al. 2011) Edwards, C. S., K. J. Nowicki, P. R. Christensen, J. Hill, N. Gorelick, and K. Murray (2011), Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multispectral data, J. Geophys. Res., 116, E10008, doi:10.1029/2010JE003755..

(Egorov et al. 2013) Egorov, V., Lakdawalla, E., Stooke, P. Russia’s Mars 3 lander maybe found by Russian amateurs, The Planetary Society, [cit. 2014-11-02].

(Lakdawalla 2008) Lakdawalla, E., HiRISE images of the Phoenix landing site, The Planetary Society, [cit. 2014-11-02].

(Lemoine et al. 2001) Lemoine, F.G., Smith, D.E., Rowlands, D.D., Zuber, M.T., Neumann, G.A.,Chinn, D.S., Pavlis, D.E., 2001, An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor: Journal of Geophysical Research, v. 106, no. E10, p. 23,359-23,376.

(MAP2 2014) Map-A-Planet 2 (beta). Courtesy USGS Astrogeology Science Center, http://astrogeology.usgs.gov/tools/map.

(NMC 2014) NSSDC Master Catalog, [cit. 2014-11-02], .

(Roatsch 2008) Roatsch, T., Mars Express HRSC Orthophoto and Digital Terrain Model V1.0, MEX-M-HRSC-5-REFDR-DTM-V1.0, European Space Agency, 2008.

(Seidelmann et al. 2002) , P.K., Abalakin, V.K., Bursa, M., Davies, M.E., de Bergh, C., Lieske, J.H., Oberst, J., Simon, J.L., Standish, E.M., Stooke, P., Thomas, P.C.: Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000. Celest. Mech. Dyn. Astron. 82, 83-110 (2002).

(Smith et al. 1999) Smith, D., G. Neumann, P. Ford, R. E. Arvidson, E. A. Guinness, and S. Slavney, ”Mars Global Surveyor Laser Altimeter Precision Experiment Data Record”, NASA Planetary Data System, MGS-M-MOLA- 3-PEDR-L1A-V1.0, 1999.

(Smith et al. 2003) Smith, D., G. Neumann, R. E. Arvidson, E. A. Guinness, and S. Slavney, ”Mars Global Surveyor Laser Altimeter Mission Experiment Gridded Data Record”, NASA Planetary Data System, MGS-M-MOLA-5- MEGDR-L3-V1.0, 2003.

(Stooke 2012) Stooke, P., Martian Cartography, UnmannedSpaceflight.com, [cit.2014-11-02], available from www.unmannedspaceflight.com.

2014-02-13

Dvě tváře Phoebe

Je tomu už skoro deset let, co mezinárodní sonda/družice Cassini dorazila k Saturnově systému a od té doby přináší stále nové a nové poznatky o tomto plynovém obru a jeho okolí.
Cassini se dostala na oběžnou dráhu okolo Saturnu 1. července 2004, ale dnes se zaměřím na události, ke kterým došlo ještě před tím.
Týmu mise se totiž podařil husarský kousek, když úspěšně do plánu letu zahrnuli i blízký průlet okolo jednoho ze Saturnových vnějších měsíců s nepravidelnou dráhou. Takto úspěšný zatím nikdo jiný nebyl navzdory tomu, že měsíců tohoto typu je několik desítek a to nejen okolo Saturnu, ale i okolo Jupiteru.
A tak ještě pár týdnů před samotným příletem sondy k cílové planetě, prolétla Cassini 11. června 2004 jen 2068 kilometrů od měsíce Phoebe.


Obrázek/Figure 1. Saturnian moon Phoebe from the Voyager 2 spacecraft.

Animated gif of images of Phoebe from distance 2.2 milions km.
This images were best images which we had before Cassini's flyby.
Link leads to NASA's Solar System Exploration page.
Kredit/Credit: NASA / JPL.

Phoebe byl znám už přes 100 let a dokonce jsme měli i fotografie ze sondy Voyager 2, která kolem něj v roce 1981 (obr.1). Tehdy jsme však neměli takovou kliku, protože průletová vzdálenost byla asi 2,2 miliónů kilometrů. Jen díky výkonné kameře s teleobjektivem a na poměry vnějších měsíců obřím rozměrům Phoebe mohl Voyager rozlišit měsíc jako kotouček s průměrem okolo 10 pixelů.
Díky těmto obrázkům mohli vědci odvodit dobu rotace, určit polohu pólů, sestavit první hrubou mapu povrchu a v neposlední řadě změřit průměr Phoebe na zhruba 220 kilometrů.
Skutečný průlom v poznání Phoebe ale přinesla až sonda Cassini. Dlouho před jejím průletem okolo měsíce se vědělo, že Cassini bude mít pouze jeden pokus, reparát nepřicházel v úvahu, protože Phoebe je příliš daleko od Saturnu, mimo běžný "dolet" Cassini. Do pozorování se tak měla zapojit naprostá většina přístrojů na sondě. Situace byla o to komplikovanější, že v rámci "úspor" přišla Cassini ještě ve stádiu návrhu o plánovanou pohyblivou robotickou plošinu (viz obr.2). Protože přístroje mají často výhled různými směry, znamenalo to, že sonda se bude muset často otáčet .



Obrázek/Figure 2. Saturn Orbiter /Titan Probe (SOTP), predecessor of Cassini/Huygens.

This spacecraft was planned with scan platform.
Cassini's lacks of similar platform is significant drawback in every close flyby.
Kredit/Credit: NASA / JPL.

Průlet okolo Phoebe očekávala odborná vědecká i laická obec s velkým zaujetím, protože ač Phoebe je těleso relativně malé (vzhledem k planetám či velkým měsícům), předpokládalo se, že se jedná mezi měsíci Saturna o přistěhovalce z Kuiperova pásu. To by znamenalo, že by Cassini provedla první blízký průzkum takového tělesa v historii a lidé by si mohli udělat mnohem bližší obrázek o tom, jak tato tělesa vypadají. Cassini byla (a stále je) také velmi dobře přístrojově vybavenou sondou.
Průlet nakonec vyšel prakticky na jedničku, Cassini sledovala Phoebe s pár pauzami hned několik Phoebijských dní a do pozorování se mimojiné zapojil třeba i palubní radar. Velmi se činil i kamerový systém ISS, který pořídil celkem 554 snímků Phoebe. Během největšího přiblížení Cassini pořídila snímky na kterých je možné spatřit jen ~25 metrů velké detaily (až 12 m/pix, viz třeba zde). Zhruba půl hodiny před a po příletu pořídily kamery sadu snímků, které ukazují celý v tu dobu viditelný povrch při rozlišeních 65-95 m/pix. Tyto snímky byly už několikrát složeny do mozaik, ale žádná z nich není v barvě.


Obrázek/Figure 3. Saturnian moon Phoebe from the Cassini spacecraft.

Mosaic from images which were taken before Cassini's flyby around this enigmatic moon.
Resolution is 60 m/pix. South is approximately at the top and west is to the right. 
Colors are added from images from Cassini's WAC camera and VIMS spectrometer.
Colors are set to approximately natural look. 
Date: 11.6.2004.
Kredit/Credit: NASA / JPL / SSI / UA / Daniel Macháček.

Zajímavé je, že Cassini pořídila pro každou mozaiku barevné snímky ze širokoúhlé kamery a barevné mozaiky přesto nejsou k dispozici. Proč? Odpověď je snadná. Průlet Cassini okolo Phoebe byl skoro bezchybný, navigace skvělá, ale nějaká ta chybička se vloudí vždy. Kamery ISS měly nastaveny příliš dlouhé expoziční doby a tak je velká část snímků Phoebe přeexponována. To se týká prakticky všech barevných snímků a velké části černobílých snímků. Naštěstí většina ČB snímků z nejbližší vzdálenosti, včetně snímků vhodných pro mozaiky, se povedla.
I přesto, že Phoebe je těleso šedivé a barevně nevýrazné, absence jeho barevných obrázků mě vždy provokovala. Takže jsem se nakonec pokusil udělat obě mozaiky, jak před příletem (obr.3), tak i po průletu (obr.4) v barvě. V obou případech byly k dispozici barevné snímky z širokoúhlé kamery WAC, ale ty byly asi z 50% přeexponované. Nakonec jsem se tedy musel poohlédnou po jiném zdroji, ze kterého bych barvu doplnil pro zbývajících 50% povrchu.
Kromě kamer ISS má Cassini na palubě i velmi užitečný zobrazující spektrometr VIMS. Tento přístroj pořizuje snímky, které mají několik set barev a drobné rozdíly mezi nimi mohou prozradit chemické složení povrchu či atmosfér planet či měsíců. Pro mne bylo důležité, že pracuje i ve viditelném záření. Gordan Ugarkovic, známý svými skvělými pracemi, založenými zejména na snímcích z Cassini, kdysi vytvořil užitečný prográmek QUB2RGB, který dokáže extrahovat data ze spektrometru VIMS a zpracovat je do podoby obrazu, který by přibližně vidělo lidské oko. VIMS má ovšem i nevýhody a to velmi nízké rozlišení, velikost výsledných obrázků (max. 64×64 pixelů), snímky jsou často zašuměné a způsob pořízení dat vede často k výrazné deformaci obrazu. Barevné snímky, použité pro nahrazení přeexponovaných částí v barevných snímcích kamery WAC, tak mají relativně nízkou kvalitu, ale přesto je to asi jediné možné řešení při absenci lepších dat. 


Obrázek/Figure 4. Saturnian moon Phoebe from the Cassini spacecraft.

Mosaic from images which were taken after Cassini's flyby around this enigmatic moon.
Resolution is 60 m/pix. South is approximately at the top and west is to the right. 
Colors are added from images from Cassini's WAC camera and VIMS spectrometer.
Colors are set to approximately natural look. 
Date: 11.6.2004.
Kredit/Credit: NASA / JPL / SSI / UA / Daniel Macháček.

Výsledné mozaiky mají obě rozlišení 60 m/pix, použité ČB snímky měly originální rozlišení mezi 58 m/pix a 131 m/pix, přičemž u většiny to bylo 65-90 m/pix. Nejmenší viditelné detaily (třeba krátery) tak mají rozměry asi 100-200 metrů. Všechny snímky s vysokým rozlišením byly pořízeny úzkoúhlou kamerou NAC. Barevné snímky ze širokoúhlé kamery WAC měly rozlišení 612-685 m/pix v případě mozaiky na obrázku 3 a 711-776 m/pix u obrázku 4. Data ze spektrometru VIMS pak měly podobu snímků s rozlišením 5-10 kilometrů. Výčet použitých snímků je přímo na obrázcích, ty které mají před číslem N jsou pořízeny úzkoúhlou kamerou NAC, W odpovídá širokoúhlé kameře WAC (spolu s NAC tvoří kamerový systém ISS) a malé "v" přináleží snímkům ze spektrometru VIMS. Jeden z ČB snímků použitých v obrázku 3 byl silně přeexponován. Existoval sice záložní snímek, ale ten má velmi zvláštní vadu, která vylučuje jeho použití. Naštěstí jej dokázali opravit odborníci ze Space Science Institute (SSI) a použili jej v mozaice PIA 6073. Malou část z této mozaiky jsem pak použil místo přeexponovaných dat.
Vzhledem ke osvětlení povrchu při průletu jsem výsledné mozaiky otočil tak, že jih je nahoře a západ vpravo. Dominantou obou mozaik je kráter Jason, který je na obrázku 3 vlevo a na obrázku 4 vpravo. Díky tomu, že je na obou obrázcích, umožňuje udělat si představu o pozici sondy při snímkování. Ještě vhodnější pro tento účel je jeden z menších kráterů Erginus, což je kráter uvnitř Jasona a je snadno rozpoznatelný podle velmi jasných sesuvů. Na obrázcích je tento kráter ve spodní části Jasona. Jasné sesuvy svědčí v případě Phoebe o zásobách čistého vodního ledu pod jinak velmi tmavým povrchem měsíce. Pátravé oko si kromě myriád kráterů také všimne občasných skalních bloků, rozesetých po povrchu. Některé z nich mají velikost až okolo půl kilometru.

2013-12-26

Odložené případy

Po delší pauze se vracím k blogu. Dnešní příspěvek ale není klasickým příspěvkem, spíše je stručným shrnutím toho, co se na blogu neobjevilo, ale objevit mělo.

Před pár týdny jsem se po delší době vrátil k sestavování mozaik kosmických těles a výsledkem byla tato barevná kompozitní mozaika Saturnova měsíce Dione (obr.1) složená ze snímků pořízených kamerami sondy Cassini koncem roku 2011.

Obrázek/Figure 1.
Saturnian moon Dione from the Cassini spacecraft.
Mosaic contains high resolution data from 14 images and color from another 42 (filters UV3, GRN, and IR1). Colors are set to approximately natural look. Original high resolution images had resolution 349 - 476 m/pix, final mosaic has 300 m/pix resolution. Date: 12.12.2011.
Kredit/Credit: NASA / JPL / SSI / Daniel Macháček.

Jako podklad této mozaiky sloužil snímek W1702383598 ze širokoúhlé kamery WAC systému ISS. Mozaika je poskládána z celkem 14-ti snímků z kamery NAC s vysokým rozlišením. Barevná informace pochází z dalších 42 snímků pořízených přes filtry UV3, GRN a IR1. Všechny snímky byly kalibrovány pomocí programu IMG2PNG od Björna Jónssona. Barva byla upravena tak, aby se celkový vzhled Dione blížil tomu, jak by měsíc vidělo běžné lidské oko. Rozlišení použitých snímků bylo 349 až 476 m/pix (pro ČB snímky s vysokým rozlišením) a samotná mozaika byla přepočtena na rozlišení 300 m/pix. Celkem 57 použitých snímků bylo pořízeno 12. prosince 2011 mezi 11:30 až 12:10 UTC. Jedná se o snímky N1702383635 až N1702386031 plus W1702383598.
Bohužel jsem během publikace obrázku zjistil jednu nemilou a jednu milou věc. Tou nemilou je nový automatický filtr v Picase, který automaticky zničí při nahrání vzhled každého obrázku. Vzhledem k tomu jak se člověk snaží parametry každého obrázku co nejlépe nastavit, je každý nevyžádaný zásah velmi iritujíci. Naštěstí zhruba ve stejnou dobu uvolnil Flickr všechna omezení na publikování snímků, pokud se tedy člověk spokojí s jedním Terabajtem místa. Z toho důvodu budou všechny další obrázky na blogu z mého nového konta na Flickru, což je trochu mrzuté, s Picasou jsem byl totiž docela spokojený.

Obrázek/Figure 2.
Asteroid Gaspra from the Galileo spacecraft.
Resolution is 30 m/pix (original images 53.7 m/pix). Image is colorised by lower resolution data
(filters IR-8890, green and violet). Date: 29.10.1991.
Kredit/Credit: NASA / JPL / Daniel Macháček.

Na flickru je zatím výběr z těch nejlepších děl, která jsem vytvořil. Část znají mí čtenáři z blogu, část byla publikována na fóru UMSF. Zde se zastavím u dvou obrázků. Prvním je barevná kompozitní mozaika planetky Gaspra (obr.2), kterou jsem dělal speciálně pro Emily Lakdawallu z Planetary Society. Emily obrázek použila ve velkém překledu všech planetek a komet, které zatím zblízka vyfotily kosmické sondy. Montáž obrázků si můžete prohlédnout v tomto článku. V původní verzi ale zatím publikován nebyl, až nyní na Flickru.
Obrázek je mozaikou ze dvou snímků pořízených 29. října 1991 (c0107318313 a c0107318326) americkou sondou Galileo, která byla tou dobou na cestě k Jupiteru. Barva je ze tří snímků pořízených přes barevné filtry - IR-8890, zelený a fialový (snímky c0107316113, c0107316065 a c0107316078). Rozlišení originálních snímků bylo 54 m/pix, mozaika je zvětšena na 30 m/pix.

Obrázek/Figure 3.
Neptunian moon Triton from the Voyager 2 spacecraft at 500 m/pix.
Kredit/Credit: NASA / JPL / Daniel Macháček.

Druhým obrázkem (obr.3) je opět barevná kompozitní mozaika, tentokrát tělesa, které je zatím konečnou metou lidského snažení o průzkum Sluneční soustavy. Neptunův měsíc Triton je nejvzdálenějším tělesem, které jsme doposud prozkoumali. O tento titul sice přijde za dva roky při průletu sondy New Horizons okolo soustavy Pluto- Charon, ale rozhodně nepřijde o pozici jednoho z nejzajímavějších těles ve Sluneční soustavě. Například i nezkušené oko si snadno povšimne, že Triton má velmi mladý povrch s minimem kráterů. Poblíž okraje srpku lze spatřit tmavé skvrny, které jsou stopami po soptění dusíkových gejzírů a napravo nahoře nedaleko terminátoru je vidět dvojice zmrzlých jezer(?). Povrch Tritonu je stále záhadou a přesný mechanismus vzniku většiny viditelných útvarů je neznámý nebo nejistý. Mozaika je vytvořena ze snímků sondy Voyager 2 (snímky jsou uvedeny v obrázku) a má v plné velikosti rozlišení 500 m/pix. I zde se jedná o kombinaci černobílých snímků s vysokým rozlišením a barevných s nižším rozlišením.

Obrázek/Figure 4.
Advanced astrometric satellite Gaia (ESA).
Kredit/Credit: ESA/ATG medialab; background image: ESO/S. Brunier.

Minulý týden ve čtvrtek (19.12.2013) úspěšně odstartovala evropská astrometrická družice Gaia. Vzhledem k tomu, že ji považuji za jednu z nejvýznamějších vědeckých misí vůbec, napsal jsem článek pro blog kosmonautix.cz. Článek je stručným popisem družice Gaia, jejího vývoje a některých vědeckých cílů.

Obrázek/Figure 5.
Topographic map of Venus at full resolution.
Image has 16,250×13,000 pixels and ~60MB size. PDF version is available here.
Warning! PDF has almost 100 MB and you need powerful viewer and computer.
Kredit/Credit: NASA / JPL / USGS / Russian Academy of Sciences / Arecibo Observatory /
P. G. Ford / G. H. Pettengill / D. B. Campbell / Donald P. Mitchell / Daniel Macháček.

Poslední věc se týká opět Flickru. Jak už jsem se zmínil, obrázky teď mohu nahrávat bez omezení. Toho jsem ihned využil k publikaci mé topografické mapy Venuše. Nyní si tedy můžete prohlédnout mapu v plném rozlišení. V podobě obrázku (obr.5) má plnou velikost 16 250×13 000 pixelů a skoro 60 MB. PDF verze je ještě větší a má skoro 100 MB. K prohlížení doporučuji Sumatru nebo Foxit Viewer.